
CS 260R Metadrive Report

Colton Rowe
CS 260R, Dr. Bolei Zhou

1 Method Introduction: PPO1

Proximal Policy Optimization (PPO) is an on-policy method that uses gradient clipping to keep the2

model parameters from changing too quickly. PPO balances the trade off between exploration and3

exploitation in a wide set of environments, both continuous and discrete. Because of it’s efficiency, I4

chose to use PPO to train my agents. In on-road driving, we care less about novelty and more about5

avoiding crashes and getting to the destination. PPO is an on-policy algorithm, so using PPO will6

give the agent good driving experience in a set of environments it’s likely to encounter. I initially7

experimented with some off-policy algorithms like TD3 and SAC, but empirically, their training8

curves didn’t converge as well as PPO.9

2 Tuning the Model10

To increase the route completion of my agent, I experimented with multiple hyper parameters of the11

model.12

2.1 Training Scenario Count13

This is the number of unique scenarios the model is able to incorporate into its experience. I found14

that increasing the number of scenarios generally improved the performance of the model, up until15

a point. I tried testing scenario amounts of 50, 500, 5,000, and 50,000. The sweet spot was 5,000 -16

models with lower numbers of scenarios didn’t have enough variance in their training data to converge17

past 0.45 route completion, and models with higher numbers of scenarios were took too long to start.18

2.2 Clip Range19

I tested clip ranges of 0.1, 0.2, 0.3, and 0.4. Intuitively, the clip range is the radius the model can step20

within to update its weights. Higher clip ranges give the model more flexibility with its updates, but21

risk "falling off a cliff," where a bad update has a fatal effect on the model. The models with higher22

clip ranges tended to start off slower before settling into a gradual ascent, while models with lower23

clip ranges started off much more quickly. Ultimately, 0.1 proved to be the best clip range in terms of24

performance.25

2.3 Reward Function and Gamma26

Because our agent is tested solely on route completion, it should care less about hitting obstacles and27

more about completing the route. In the real world, we care much more about safety when training28

models, but for this toy example, modifying the reward function to account for this difference in29

evaluation could lead to tangible results. I modified the reward function to have less of a penalty for30

crashes and driving off the road. This dramatically raised the ceiling for the route completion, and31

in testing, the model still has a very low crash and off-road percentages. I think this is because the32

model cares about these penalties to the point that it effects it’s success, and less so that is intrinsically33

weary of them.34



Gamma, the discount factor, effects how much the agent cares about future rewards versus immediate35

rewards. A discount factor closer to 1 means that the agent cares about long-term rewards more, and36

a discount factor closer to 0 means the model cares mostly about short term rewards. I tried discount37

factors of 0.99 and 0.995. As expected, the higher discount factor tended to improve the models38

success in the environment.39

3 Generalization Experiment40

3.1 Graphs41

42

43

3.2 Discussion44

Generally, the intuition is that more example scenarios leads to higher performance, but I found that45

to not necessarily be the case in the tests with a small number of training scenarios. In the test with46

only 1 scenario, the evaluation route completion is much higher than the training route completion.47

It’s possible that this is due to random chance, maybe the training scenario was much easier or more48

difficult than the evaluation scenarios, and the model was able to efficiently exploit this. With higher49

numbers of training scenarios, the curves look more like what you’d expect, with higher training50

success than testing success. With these small number of scenarios though, the variance could be too51

high to have this trend hold. As I increased the number of scenarios by orders of 10 in subsequent52

tests, the results looked much more like what you would expect.53

4 Final Model54

The final architecture I used was PPO with a MLP Actor-Critic policy. I used a γ = 0.998, 500055

scenarios, and a clip ratio of 0.1. I decreased the penalty for crashing and off-roading by half in the56

value function. I was able to train this model to around step 5,500 when my computer crashed. I57

reloaded the agent from a checkpoint to train it for another 2,000 steps, and it began to perform better58

than it had been before. I suspect this might have been because the optimizer was too comfortable in59

2



the original run, so pausing and rerunning the model could have introduced necessary stochasticity60

into the system. This may be indicative that in the future, I should experiment with adding entropy61

into the system as the steps progress. This matches the intuition that the environment should get62

harder as the model gets better in order to continue progress - if the gradient flat lines, then the model63

will have a harder time improving.64

Figure 1: Testing and Evaluation performance of final model over time.

==================================================65

EVALUATING AGENT agent_HIDDEN_UID (CREATOR: Colton Rowe, UID: HIDDEN_UID)66

==================================================67

Start evaluation!68

==================================================69

THE PERFORMANCE OF agent_HIDDEN_UID:70

71

crash_sidewalk_rate: 0.072

crash_vehicle_rate: 0.00684304248282879773

episode_cost: 4.2674

episode_length: 374.4775

episode_reward: 324.440086040199876

max_step_rate: 0.077

out_of_road_rate: 0.378

route_completion: 0.883035974323233679

success_rate: 0.780

In testing, the model tends to performs better even than the evaluation curve on the model. When the81

agent chooses it’s action, instead of taking the maximum of it’s policy, the agent samples from the82

distribution of the predicted action to remove determinism from its behavior. This random sampling83

greatly improves performance, taking it from around 45% route completion to nearly 90% route84

completion.85

4.1 Looking forward86

In the future, I would like to try a actor critic policy with a recurrent neural network (RNN) instead87

of an fully connected neural network (FC net). Stable Baselines 3 doesn’t yet provide support for88

RNNs, but some community builds of SB3 has support for them. Introducing a recurrent model could89

let the agent perceive time-dependencies in a similar way that humans perceive the world.90

3


	Method Introduction: PPO
	Tuning the Model
	Training Scenario Count
	Clip Range
	Reward Function and Gamma

	Generalization Experiment
	Graphs
	Discussion

	Final Model
	Looking forward


